Stability Issues of Dye Solar Cells
نویسندگان
چکیده
Aalto University, P.O. Box 11000, FI-00076 Aalto www.aalto.fi Author Muhammad Imran Asghar Name of the doctoral dissertation Stability Issues of Dye Solar Cells Publisher School of Science Unit Department of Applied Physics Series Aalto University publication series DOCTORAL DISSERTATIONS 53/2012 Field of research New Energy Technologies Manuscript submitted 13 December 2011 Manuscript revised 1 February 2012 Date of the defence 18 May 2012 Language English Monograph Article dissertation (summary + original articles) Abstract The thesis discusses dye solar cells (DSCs) which are emerging as a potential candidate for many applications. The goal of the work was to find more stable and higher performing materials for flexible DSCs, improve understanding of the effects on the DSC stability, and to develop experimental methods that give improved resolution of the degradation mechanisms. First an intensive critical literature review was done to highlight the important degradation mechanisms in DSCs. It was concluded that techniques giving chemical information are needed to understand the degradation reactions and their effect on electrical performance. It would be advantageous to have methods that enable monitoring chemical changes in operating DSCs, or periodically over their lifetime during accelerated ageing tests. Here the focus was on new and advanced in-situ methods that allow continuous study of the aging of the cells. In this regard, optical techniques such as Raman spectroscopy, newly introduced image processing method and recently introduced segmented cell method were employed to bridge the link between the chemical changes in the DSCs and the standard PV measurement methods. Here for instance the image processing was demonstrated to study the bleaching of electrolyte under ultraviolet and visible light at 85°C. The results obtained with the image processing method and the standard electrical measurements were in agreement and showed that the bleaching of electrolyte was initiated by TiO2 and slowed down by the presence of the dye. For the roll-to-roll production of DSCs cheap, flexible and stable substrates are required. In this work, a series of metals i.e. StS 304, StS 321, StS 316, StS 316L and Ti were successfully stabilized at the CE of a DSC by using a sputtered Pt catalyst layer that doubled also as a corrosion blocking layer. This work was an important step forward towards stable flexible DSCs. Finally, the degradation due to the manufacturing step related to the electrolyte filling in the DSC was studied. With the help of recently introduced segmented cell method, it was found the nanoporous film of TiO2 was acting as filter for some of the commonly used electrolyte additives i.e. tBP and NMBI. This resulted in spatial performance variation in the DSC which lead to significant losses in the overall performance (here up to 35 % losses in the up-scaling) and thus it has important implications for large area DSCs.The thesis discusses dye solar cells (DSCs) which are emerging as a potential candidate for many applications. The goal of the work was to find more stable and higher performing materials for flexible DSCs, improve understanding of the effects on the DSC stability, and to develop experimental methods that give improved resolution of the degradation mechanisms. First an intensive critical literature review was done to highlight the important degradation mechanisms in DSCs. It was concluded that techniques giving chemical information are needed to understand the degradation reactions and their effect on electrical performance. It would be advantageous to have methods that enable monitoring chemical changes in operating DSCs, or periodically over their lifetime during accelerated ageing tests. Here the focus was on new and advanced in-situ methods that allow continuous study of the aging of the cells. In this regard, optical techniques such as Raman spectroscopy, newly introduced image processing method and recently introduced segmented cell method were employed to bridge the link between the chemical changes in the DSCs and the standard PV measurement methods. Here for instance the image processing was demonstrated to study the bleaching of electrolyte under ultraviolet and visible light at 85°C. The results obtained with the image processing method and the standard electrical measurements were in agreement and showed that the bleaching of electrolyte was initiated by TiO2 and slowed down by the presence of the dye. For the roll-to-roll production of DSCs cheap, flexible and stable substrates are required. In this work, a series of metals i.e. StS 304, StS 321, StS 316, StS 316L and Ti were successfully stabilized at the CE of a DSC by using a sputtered Pt catalyst layer that doubled also as a corrosion blocking layer. This work was an important step forward towards stable flexible DSCs. Finally, the degradation due to the manufacturing step related to the electrolyte filling in the DSC was studied. With the help of recently introduced segmented cell method, it was found the nanoporous film of TiO2 was acting as filter for some of the commonly used electrolyte additives i.e. tBP and NMBI. This resulted in spatial performance variation in the DSC which lead to significant losses in the overall performance (here up to 35 % losses in the up-scaling) and thus it has important implications for large area DSCs.
منابع مشابه
Application of azo dye as sensitizer in dye-sensitized solar cells
An azo dye used as photosensitizers in Dye-sensitized solar cells DSSCs. Azo dyes economically superior to organometallic dyes because they are color variation and cheap. The spectrophotometric evaluation of an azo dye in solution and on a TiO2 substrate show that the dye form J-aggregation on the nanostructured TiO2 substrate. Oxidation potential measurements for used azo dyes ensured an energ...
متن کاملRecent development of carbon nanotubes materials as counter electrode for dye-sensitized solar cells
Dye-sensitized solar cells present promising low-cost alternatives to the conventional Silicon (Si)-based solar cells. The counter electrode generally consists of Pt deposited onto FTO plate. Since Pt is rare and expensive metal, nanostructured carbonaceous materials have been widely investigated as a promising alternative to replace it. Carbon nanotubes have shown significant properties such...
متن کاملElectron Transfer in Dye-Sensitized Nanocrystalline TiO2 Solar Cell
The dye-sensitized solar cells (DSSC) have been regarded as one of the most promising new generation solar cells. Tremendous research efforts have been invested to improve the efficiency of solar energy conversion which is generally determined by the light harvesting efficiency, electron injection efficiency and undesirable electron lifetime. In this review, various characteristics of dye-...
متن کاملInvestigation of Organic Compounds as Photosensitizer for Dye Sensitized Solar Cells
Two organic compounds (SC-23=(E)-2-Cyano-3-(2,3-dimethoxyphenyl) acrylic acid and SC-25=(E)-2-Cyano-3-(2,5-dimethoxyphenyl) acrylic acid) involving methoxy groups as the electron donor and cyanoacrylic acid group as the electron acceptor have been investigated for dye sensitized solar cells. They shows a short-circuit current density (Jsc) of 2.08 and 1.81 mA cm-2, an open circuit voltage (Voc)...
متن کاملSynthesis and Application of Two Organic Dyes Based on Indoline in Dye-Sensitized Solar Cells
In this paper we sensitized two new organic days dye 1 and dye 2 based on thioindigo with phenothiazine as the electron donor group. We used acrylic acid and cyanoacrylic acid as the electron acceptor anchoring group in dye 1 and dye 2 respectively. The proposed dyes were sensitized from phenothiazine as the starting material by standard reactions and characterized by different techniques such ...
متن کاملInvestigation the effect of substrate photo-electrode based on screen method on performance of dye-sensitized solar cells
In this paper we studied preparation of working films of dye-sensitized solar cells using screen printed method. The organic dye based on phenoltiazine with cyanoacrylic acid as the electron donor group utilized as photosensitizer. Fluorine-doped thin oxide FTO coated glass is transparent electrically conductive and ideal for use in dye-sensitized solar cells. FTO glass was coated by screen pri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012